3DプリンタによるComposites 2.0のプリント成形

Manufacturing of Composites 2.0 by means of 3D printer

- Composite obtained by DDM is referred to Composite 2.0, and those obtained by conventional manufacturing as Composite 1.0.

- A fiber reinforced plastic obtained by Composites 2.0 technology is a fully structurally and functionally optimized material with the fiber direction and volume fraction precisely controlled at every location in the composite materials with inclusion of various structural materials.
Background

DDM of 3D printed composites: Composite 2.0

- Fully structurally and functionally optimized CFRTP component.
 1. Optimization of fiber direction \(\leftrightarrow\) Stacking sequence optimization
 2. Optimization of fiber volume fraction (0 to 60% volume fraction)
 3. Combination of several fiber and matrix
 4. Implementation of functional materials

- Relaxation of stress concentration
- Debonding free sandwich structure
- Stiffness tailoring

- This paper proposes

Additive manufacturing of continuous carbon fiber reinforced plastic by *in-site impregnation technique*

A thermoplastic polymer and continuous fibers were separately supplied to a 3D printer.
Fused deposition modeling by means of in-site impregnation technique

- Commercially available 3D printer (Fused deposition modeling) was used.
- Printer head was modified to supply a continuous carbon fiber.

A thermoplastic polymer and continuous fibers were separately supplied to a 3D printer. → *In-nozzle impregnation of fiber with matrix*

- Fiber and matrix can be selected arbitrarily.
- Fiber volume fractional can be changed.
- Several fibers and matrix can be hybridized.

Thermoplastic filament (PLA, φ1.75mm)

Carbon fiber (T800S, Toray)

≈ 100 fibers

Fig. 1 Schematic diagram of the printer head
Fig. Our first 3D printer for continuous fiber composites by in-nozzle impregnation
Materials

- **Condition of printing**

 Nozzle temperature : 210 °C
 Heated bed temperature : 80 °C
 Printer-head moving speed : 100 mm/min
 Feeding speed : 100 mm/min
 Diameter of injection nozzle: 1.4 mm

Fig. 2 Condition of 3D printing

Movie of 3D printing of a unidirectional CFRTP
Specimens

- **3D printed tensile specimen**
 - Unidirectionally CFRTP.
 - Fiber volume fraction of CFRTP specimen was $\approx 6.6\%$
 - PLA specimen, Jute fiber reinforced plastic (Green composite) was also printed by the 3D printer.

- **Tensile test**
 - Universal testing machine
 - Loading speed: 1.0 mm/min